Rhombus (समचतुर्भुज) - Complete Geometry Guide

A Rhombus is a special type of quadrilateral that plays an important role in Geometry, especially in competitive exams like RRB NTPC, Group D, and SSC.


✨ Definition (परिभाषा)

A rhombus is a four-sided figure (quadrilateral) with all sides equal and diagonals that bisect each other at right angles (90°).

In Hindi:

समचतुर्भुज एक ऐसा चतुर्भुज होता है जिसकी सभी भुजाएँ बराबर होती हैं और विकर्ण एक-दूसरे को समद्विभाजित करते हैं तथा 90° पर काटते हैं।


🔹 Properties of a Rhombus

Property Explanation
All sides equal AB = BC = CD = DA
Opposite angles equal ∠A = ∠C, ∠B = ∠D
Diagonals intersect at 90° AC ⊥ BD
Diagonals bisect each other Each diagonal cuts the other into two equal halves
Diagonals bisect angles Each diagonal divides vertex angles equally

📚 Area Formula (क्षेत्रफल का सूत्र)

The area of a rhombus is given by the product of its diagonals divided by 2:

Area = 1 2 × d 1 × d 2 \text{Area} = \frac{1}{2} \times d_1 \times d_2

Where:

In Hindi:

समचतुर्भुज का क्षेत्रफल = 1 2 × विकर्ण 1 × विकर्ण 2 \text{समचतुर्भुज का क्षेत्रफल} = \frac{1}{2} \times \text{विकर्ण}_1 \times \text{विकर्ण}_2


📈 Example Question (परीक्षा में आने वाला सवाल)

Q. Diagonals of a rhombus are 10 cm and 8 cm. Find its area.

Solution:

Area = 1 2 × 10 × 8 = 40   c m 2 \text{Area} = \frac{1}{2} \times 10 \times 8 = 40\ cm^2

Answer: 40 cm²


📊 Rhombus vs Other Quadrilaterals

Shape Area Formula Diagonal Property
Square side² or 1/2 × d₁ × d₂ Equal diagonals at 90°
Rectangle l × b Equal diagonals
Rhombus 1/2 × d₁ × d₂ Unequal diagonals at 90°
Parallelogram b × h No specific diagonal rule

🛫 Other Formulas

4 × Side 4 \times \text{Side}

Side = ( d 1 2 ) 2 + ( d 2 2 ) 2 \text{Side} = \sqrt{\left(\frac{d_1}{2}\right)^2 + \left(\frac{d_2}{2}\right)^2}

(This is derived using the Pythagoras Theorem.)


🎓 Important Keywords for Exams


📆 Exam Tips (RRB NTPC / Group D)


🎨 Visual Diagram (Representation)

         D
        / \ 
     d1/   \d1
      /     \     
     A-------C
     |       |
  d2 |       | d2
     |       |
     B-------B

Note: Diagonals AC and BD intersect at 90° and divide the rhombus into 4 right-angled triangles.


✍️ Practice Makes Perfect!

Try solving 3–5 rhombus-based questions to solidify your understanding.